Appendix for online publication

A Samples and descriptive statistics

Table A.	1. Surveys use	and EITA analysis
Burkina Faso	2010	
Cameroon	2005, 2011	
Congo DR	2008, 2013	
Gabon	2012	
Ghana	2009	
Kenya	2004, 2009	
Liberia	2008	
Malawi	2005, 2010	
Mali	2007, 2012	
Mozambique	2011	
Nigeria	2009, 2013	
Rwanda	2006, 2010	
Sierra Leone	2013	
Tanzania	2010	
Uganda	2007, 2011	
Zambia	2008	
Zimbabwe	2006, 2010	

Table A.1: Surveys used in the cross sectional and EHA analysis

	(1)	(2)	(3)
	Cross sectional	Repeated	EHA
Burkina Faso	9437		18241
Cameroon	6573	65	8895
Congo DR	7912	112	6702
Gabon	4089		4548
Ghana	1797		2497
Kenya	9181	49	16337
Liberia	3826		4160
Malawi	13540	30	23406
Mali	12014	59	20606
Mozambique	5816		7250
Nigeria	41315	124	76639
Rwanda	6006	9	4655
Sierra Leone	4309		5012
Tanzania	5490		7956
Uganda	3441	43	4295
Zambia	4227		6321
Zimbabwe	10059	62	16235
N (women, cells, marriage years)	149032	553	233755

Table A.2: Number of observations by country in the different samples

Number of women in the cross sectional sample, number of grid cells in the repeated cross section sample and number of marriage years in the event history sample (EHA).

		V 1			
	(1)				
	Cross	s section sample			
	Mean	SD			
Abuse last year	0.25	(0.43)			
Drought (2.5) last season	0.03	(0.18)			
Drought (2.5) next-to-last season	0.03	(0.18)			
Flood (2.5) last season	0.01	(0.08)			
Flood (2.5) next-to-last season	0.02	(0.14)			
Drought (10) last season	0.14	(0.34)			
Drought (10) next-to-last season	0.20	(0.40)			
Flood (10) last season	0.05	(0.22)			
Flood (10) next-to-last season	0.11	(0.31)			
N	149032				
		(1)			
	Repeated	cross section sample			
	Mean	SD			
Abuse last year	0.27	(0.17)			
Drought (2.5) last season	0.03	(0.16)			
Drought (2.5) next-to-last season	0.04	(0.20)			
Flood (2.5) last season	0.01	(0.08)			
Flood (2.5) next-to-last season	0.02	(0.13)			
Drought (10) last season	0.10	(0.30)			
Drought (10) next-to-last season	0.23	(0.42)			
Flood (10) last season	0.06	(0.23)			
Flood (10) next-to-last season	0.10	(0.29)			
N	553				
		(1)			
	Event	history sample			
	Mean	SD			
First violent episode	0.05	(0.23)			
Drought (2.5)	0.04	(0.20)			
Flood (2.5)	0.05	(0.21)			
Drought (10)	0.23	(0.42)			
Flood (10)	0.18	(0.38)			
N	233755	· · ·			

Table A.3: Main variables by sample

B The effect of rainfall shocks on low household wealth

Table B.1: Cross sectional	analysis of the effect	of rainfall shocks on low hous	e-
hold wealth			

DV: Lowest two wealth quintiles	(1)	(2)	(3)	(4)	(5)	(6)
Sample	All	All	All	All	All	All
Drought (2.5%) last season	-0.109***	-0.098***	-0.072***	-0.045**	-0.029	-0.024
,	(0.036)	(0.031)	(0.025)	(0.022)	(0.021)	(0.022)
Drought (2.5%) next-to-last season	0.117**	0.064**	0.074^{**}	0.081***	0.041	0.045
,	(0.054)	(0.029)	(0.031)	(0.030)	(0.029)	(0.028)
Flood (2.5%) last season	0.027	0.045	0.075^{***}	0.063**	0.049**	0.035^{*}
	(0.037)	(0.031)	(0.029)	(0.026)	(0.023)	(0.021)
Flood (2.5%) next-to-last season	-0.014	0.049^{*}	0.058^{*}	0.045^{*}	0.039	0.024
	(0.041)	(0.028)	(0.031)	(0.025)	(0.026)	(0.023)
\mathbb{R}^2	0.016	0.097	0.128	0.165	0.182	0.194
Moran's I of residuals	0.039^{***}	0.017^{***}	0.012^{***}	0.003^{***}	0.001^{***}	0.001^{*}
Z-score	59.84	26.37	18.54	5.76	2.72	1.94
Drought (10%) last season	-0.035	-0.018	-0.044**	-0.012	0.018	0.017
	(0.026)	(0.020)	(0.021)	(0.020)	(0.020)	(0.019)
Drought (10%) next-to-last season	0.148^{***}	0.071^{***}	0.001	-0.001	0.008	0.004
	(0.027)	(0.020)	(0.020)	(0.019)	(0.017)	(0.017)
Flood (10%) last season	-0.019	0.010	0.051^{**}	0.024	-0.003	-0.003
	(0.023)	(0.021)	(0.025)	(0.020)	(0.019)	(0.018)
Flood (10%) next-to-last season	-0.077***	-0.009	-0.045*	-0.014	-0.025	-0.022
	(0.027)	(0.019)	(0.024)	(0.020)	(0.018)	(0.017)
\mathbb{R}^2	0.021	0.097	0.128	0.164	0.182	0.194
Moran's I of residuals	0.035^{***}	0.016^{***}	0.012^{***}	0.004^{***}	0.002^{***}	0.001^{**}
Z-score	54.16	25.51	18.53	6.03	2.89	2.00
Survey F.E.	yes	yes	yes	yes	yes	yes
Age controls	no	yes	no	no	no	no
Temperature controls	no	yes	no	no	no	no
Legrenge polynomials of degree 1	no	no	yes	yes	yes	yes
Legrenge polynomials of degree 2	no	no	no	yes	yes	yes
Legrenge polynomials of degree 3	no	no	no	no	yes	yes
Legrenge polynomials of degree 4	no	no	no	no	no	yes
Ν	560,558	559,427	560,558	$560,\!558$	$560,\!558$	$560,\!558$

 Table B.2: Repeated cross sectional analysis of the effect of rainfall shocks on

 low household wealth

DV: Lowest two wealth quintiles	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Sample	All	All	All	All	All	All	All
Drought (2.5%) last season	-0.001	-0.001	0.003	0.002	0.002	0.004	-0.003
Erought (21970) hav season	(0.020)	(0.022)	(0.022)	(0.023)	(0.025)	(0.027)	(0.030)
Drought (2.5%) next-to-last season	0.062**	0.062**	0.066**	0.072**	0.059**	0.107***	0.099***
	(0.028)	(0.029)	(0.030)	(0.032)	(0.030)	(0.035)	(0.038)
Flood (2.5%) last season	0.003	-0.004	-0.0003	0.005	-0.014	0.008	-0.001
× ,	(0.018)	(0.018)	(0.018)	(0.020)	(0.019)	(0.020)	(0.021)
Flood (2.5%) next-to-last season	0.013	0.010	0.006	0.011	0.021	0.023	0.028
× ,	(0.020)	(0.018)	(0.018)	(0.017)	(0.018)	(0.022)	(0.023)
R ²	0.005	0.019	0.045	0.053	0.118	0.177	0.227
Moran's I of residuals	0.005^{***}	0.005^{***}	0.005^{***}	0.004^{***}	-0.001	-0.002	-0.003
Z-score	3.41	3.32	3.14	2.66	-0.08	-0.85	-1.07
Drought (10%) last season	0.023*	0.028	0.024	0.027	0.035^{*}	0.033	0.027
,	(0.014)	(0.018)	(0.017)	(0.018)	(0.020)	(0.021)	(0.020)
Drought (10%) next-to-last season	0.042***	0.051***	0.050***	0.058^{***}	0.038^{*}	0.046**	0.048**
	(0.015)	(0.016)	(0.016)	(0.016)	(0.020)	(0.024)	(0.025)
Flood (10%) last season	0.026**	0.019	0.022^{*}	0.031**	0.023	0.023	0.020
	(0.013)	(0.012)	(0.012)	(0.014)	(0.015)	(0.015)	(0.016)
Flood (10%) next-to-last season	-0.007	-0.012	-0.009	-0.012	-0.007	-0.016	-0.014
	(0.013)	(0.015)	(0.015)	(0.015)	(0.018)	(0.018)	(0.018)
R ²	0.021	0.037	0.060	0.073	0.127	0.181	0.231
Moran's I of residuals	0.004^{***}	0.005^{***}	0.004^{***}	0.003^{**}	-0.001	-0.002	-0.003
Z-score	3.09	3.32	3.01	2.49	-0.35	-0.83	-1.03
Grid F.E.	yes	yes	yes	yes	yes	yes	yes
Country trends	no	yes	yes	yes	yes	yes	yes
Age controls	no	no	yes	yes	no	no	no
Temperature controls	no	no	no	yes	no	no	no
Legendre polynomials of degree 1	no	no	no	no	yes	yes	yes
Legendre polynomials of degree 2	no	no	no	no	no	yes	yes
Legendre polynomials of degree 3	no	no	no	no	no	no	yes
n (women)	455,342	455,342	455,342	455,342	455,342	455,342	455,342
N (grids)	1,217	1,217	1.217	1,217	1,217	1,217	1,217

Table B.3: Repeated cross sectional analysis of the effect of rainfall shocks on very low household wealth

DV: Lowest wealth quintile	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Sample	All	All	All	All	All	All	All
Drought (2.5%) last season	-0.027	-0.023	-0.021	-0.011	-0.022	-0.019	-0.027
	(0.018)	(0.020)	(0.020)	(0.020)	(0.021)	(0.022)	(0.024)
Drought (2.5%) next-to-last season	0.057^{**}	0.061^{**}	0.064^{***}	0.053^{**}	0.055^{**}	0.099^{***}	0.106^{***}
	(0.023)	(0.024)	(0.025)	(0.025)	(0.024)	(0.028)	(0.030)
Flood (2.5%) last season	0.013	0.010	0.010	0.021	0.005	0.016	0.015
	(0.011)	(0.012)	(0.012)	(0.013)	(0.014)	(0.015)	(0.015)
Flood (2.5%) next-to-last season	0.000	0.0021	0.001	-0.001	0.014	0.019	0.023
	(0.015)	(0.015)	(0.014)	(0.016)	(0.015)	(0.016)	(0.017)
Drought (2.5%) last season	0.005	0.011	0.007	0.015	0.013	0.014	0.007
	(0.010)	(0.014)	(0.013)	(0.014)	(0.015)	(0.017)	(0.017)
Drought (2.5%) next-to-last season	0.037***	0.049***	0.050***	0.042***	0.043**	0.054^{***}	0.058***
	(0.012)	(0.013)	(0.013)	(0.014)	(0.017)	(0.019)	(0.021)
Flood (2.5%) last season	0.007	0.003	0.004	0.014	0.009	0.007	0.004
	(0.011)	(0.011)	(0.011)	(0.011)	(0.013)	(0.013)	(0.014)
Flood (2.5%) next-to-last season	-0.004	-0.005	-0.003	-0.005	0.005	0.001	0.006
	(0.009)	(0.010)	(0.010)	(0.010)	(0.012)	(0.013)	(0.014)
Grid F.E.	yes	yes	yes	yes	yes	yes	yes
Country trends	no	yes	yes	yes	yes	yes	yes
Age controls	no	no	yes	yes	no	no	no
Temperature controls	no	no	no	yes	no	no	no
Legendre polynomials of degree 1	no	no	no	no	yes	yes	yes
Legendre polynomials of degree 2	no	no	no	no	no	yes	yes
Legendre polynomials of degree 3	no	no	no	no	no	no	yes
n (women)	455,342	455,342	455,342	455,342	455,342	455,342	455,342
N (grids)	1,217	1,217	1,217	1,217	1,217	1,217	1,217

Standard errors clustered on the ERA-Interim grid level in brackets. * significant at 10%, ** significant at 5%, *** significant at 1%.

C Robustness check: Various samples of married

women

In the main analysis, we have argued for limiting the sample in the duration analysis to women who have been married less than 10 years. The reason is that women who have been married for a longer period show larger signs of heaping when asked about years since the first violent episode, e.g. there is a surplus of women who state a period which can be divided by 5 and 10. Results in this section show that similar results may be obtained if also including women who have been married for exactly 10 years (Table C.1), and with all married women (excluding marriage years before 1980) in Table C.2.

DV: First violent episode	(1)	(2)	(3)	(4)	(5)
Sample	1-10y	1-10y	1-10y	1-10y	1-10y
Drought (2.5%)	0.898*	0.869^{**}	0.862^{**}	0.877^{**}	0.868^{**}
	(0.053)	(0.053)	(0.053)	(0.053)	(0.052)
Flood (2.5%)	1.046	1.035	1.060	1.017	1.005
	(0.059)	(0.046)	(0.049)	(0.046)	(0.047)
Pseudo R2	0.026	0.033	0.031	0.034	0.035
Drought (10%)	1.015	1.003	0.995	1.007	1.009
	(0.031)	(0.032)	(0.033)	(0.032)	(0.031)
Flood (10%)	1.010	0.999	1.012	0.991	0.987
	(0.031)	(0.030)	(0.032)	(0.031)	(0.030)
Pseudo R2	0.026	0.033	0.031	0.034	0.035
Grid F.E.	yes	yes	yes	yes	yes
Piecewise constants	yes	yes	yes	yes	yes
Age at marriage (grouped)	yes	yes	yes	yes	yes
Survey-specific time trends	no	yes	yes	yes	yes
Temperature controls	no	no	yes	no	no
Legendre polynomials of degree 1	no	no	no	yes	yes
Legendre polynomials of degree 2	no	no	no	no	yes
n (marriage-years at risk)	$276,\!040$	$276,\!040$	259,996	$276,\!040$	$276,\!040$
N (women)	$55,\!243$	$55,\!243$	$53,\!543$	$55,\!243$	$55,\!243$

Table C.1: Duration analysis of the effect of weather shocks on first incidence of violence in marriage, up to and including women married for 10 years

Droughts and floods refer to rainfall below the threshold in rainy seasons terminating during the relevant marriage year or the year before. The age of marriage variable is grouped in five year intervals. Standard errors clustered on the ERA-Interim grid level in brackets. * significant at 10%, ** significant at 5%, *** significant at 1%.

DV: First violent episode Sample	(1) all	(2) all	(3) all	(4) all
Drought (2.5%)	0.898*	0.869**	0.862**	0.877**
	(0.053)	(0.053)	(0.053)	(0.053)
Flood (2.5%)	1.046	1.035	1.060	1.017
	(0.059)	(0.046)	(0.049)	(0.046)
Drought (10%)	1.021	1.016	1.010	1.022
- 、 ,	(0.023)	(0.020)	(0.024)	(0.021)
Flood (10%)	1.024	0.974	0.973	0.977
	(0.022)	(0.020)	(0.022)	(0.021)
Grid F.E.	yes	yes	yes	yes
Piecewise constants	yes	yes	yes	yes
Age at marriage (grouped)	yes	yes	yes	yes
Survey-specific time trends	no	yes	yes	yes
Temperature controls	no	no	yes	no
Legendre polynomials of degree 1	no	no	no	yes
n (marriage-years at risk)	862,099	862,099	738,679	862,099
N (women)	$93,\!519$	$93,\!519$	$89,\!421$	$93,\!519$

Table C.2: Duration analysis of the effect of weather shocks on first incidence of violence in marriage, all women

Droughts and floods refer to rainfall below the threshold in rainy seasons terminating during the relevant marriage year or the year before. The age of marriage variable is grouped in five year intervals. Marriage years before 1980 are censured. Standard errors clustered on the ERA-Interim grid level in brackets. * significant at 10%, ** significant at 5%, *** significant at 1%.

D Robustness check: Effect of violence by father

towards mother

As a robustness check, we use whether the respondent's father was violent against her mother as outcome variable, which is highly correlated with intimate partner violence but not plausibly affected by current rainfall. 24% of the women answer affirmatively on the question and these women are 122% more likely to have been abused by their partners (from 23 to 51 percentage points). The models with the least spatial autocorrelation are found in columns 6 and 7. We see that many of the models without spatial controls display strongly significant correlations with droughts and floods. These are fewer and less strong in the cases where polynomials enter the regressions, although not completely

absent.

low nousenoid wearth							
DV: Father beat mother	(1)	(2)	(3)	(4)	(5)	(6)	(7)
VARIABLES	FBM	FBM	FBM	FBM	FBM	FBM	FBM
Drought (2.5%) last season	0.021	0.013	0.016	0.026	0.029	0.037	0.036
,	(0.027)	(0.027)	(0.028)	(0.031)	(0.027)	(0.031)	(0.032)
Flood (2.5%) last season	-0.022	-0.019	-0.023	-0.024	-0.014	-0.012	0.004
	(0.014)	(0.015)	(0.015)	(0.018)	(0.019)	(0.020)	(0.025)
Drought (2.5%) next-to-last season	-0.150***	-0.142***	-0.185***	-0.189***	-0.226***	-0.190***	-0.130
	(0.056)	(0.039)	(0.053)	(0.054)	(0.045)	(0.057)	(0.092)
Flood (2.5%) next-to-last season	-0.039	-0.040	-0.039	-0.046*	-0.051^{**}	-0.045	-0.051*
	(0.042)	(0.035)	(0.038)	(0.028)	(0.026)	(0.032)	(0.027)
R ²	0.017	0.033	0.062	0.148	0.140	0.268	0.373
Moran's I of residuals	0.022^{***}	0.018^{***}	0.017^{***}	0.013^{***}	0.010**	0.000	-0.007
Z-score	4.65	3.78	3.63	2.83	2.26	0.51	-0.87
Drought (10%) last season	0.002	-0.013	-0.012	0.001	0.001	-0.002	0.004
- · · ·	(0.010)	(0.012)	(0.013)	(0.015)	(0.014)	(0.017)	(0.017)
Flood (10%) last season	-0.010	-0.002	-0.004	-0.021	-0.006	0.004	-0.001
	(0.008)	(0.010)	(0.009)	(0.013)	(0.015)	(0.018)	(0.018)
Drought (10%) next-to-last season	0.010	0.022	0.020	0.020	0.013	0.005	0.016
	(0.016)	(0.017)	(0.017)	(0.020)	(0.025)	(0.032)	(0.032)
Flood (10%) next-to-last season	-0.014	-0.014	-0.017	-0.013	0.001	-0.003	-0.013
	(0.018)	(0.018)	(0.017)	(0.020)	(0.022)	(0.021)	(0.022)
\mathbb{R}^2	0.008	0.031	0.057	0.144	0.121	0.250	0.361
Moran's I of residuals	0.023^{***}	0.018^{***}	0.017^{***}	0.011^{**}	0.008^{**}	0.000	-0.008
Z-score	4.76	3.90	3.71	2.53	1.99	0.50	-0.99
Survey F.E.	no	yes	yes	yes	yes	yes	yes
Age controls	no	no	yes	yes	no	no	no
Temperature controls	no	no	no	yes	no	no	no
Legendre polynomials of degree 1	no	no	no	no	yes	yes	yes
Legendre polynomials of degree 2	no	no	no	no	no	yes	yes
Legendre polynomials of degree 3	no	no	no	no	no	no	yes
N	154,316	154,316	154,316	154,316	154,316	154,316	154,316

Table D.1: Repeated cross sectional analysis of the effect of rainfall shocks on low household wealth

Standard errors clustered on the ERA-Interim grid level in brackets. * significant at 10%, ** significant at 5%, *** significant at 1%.

E Rural sample

We here investigate whether droughts have an effect on intimate partner violence in rural areas, as it has been argued that the effect of rainfall on household income is stronger in these households (Kudamatsu et al., 2012). Columns 6 and 7 in Table E.2 show that there is no impact of severe droughts on intimate partner violence, and that milder droughts at the 10th and 15th percentile may lead to less intimate partner violence. When studying how droughts impact wealth levels in the rural sample, we are able to tackle spatial autocorrelation using 3rd order Legendre polynomials, unlike what was the case when using the whole sample. We also see that the coefficients from the next-to-last season drought events have the expected sign, that is, droughts increase the share in the lowest wealth quintiles in rural areas. There is a significant impact of experiencing a season in the driest 2.5% of the distribution, and a weakly significant effect using the 15% cut-off. This strengthens the interpretation of droughts as negative income shocks in this sample.

From Table E.4, we see from column 5 that there is no effect of droughts on intimate partner violence the year before the interview, using the repeated cross-sections.

Table E.5 shows that the effect of droughts on wealth in rural areas is similar to that in the total population using the repeated cross-section, with only slightly higher estimates. A drought in the next-to-last season causes a significant increase in the share in the lowest two quintiles of the distribution if the drought is at the 2.5% level or 15% level (as seen in column 6), which is the specification which performs best in terms of spatial autocorrelation. Drought have weakly significant effects at if within the 5% and 10% driest seasons.

Finally, we ran the duration model on the rural sample. As shown in Table E.6, this confirms the finding of there not being any relationship between droughts and intimate partner violence. Note that the significant negative results in the larger sample are also not present, although point estimates still indicate odds ratios smaller than unity.

Table E.2: Cross sectional analysis of the effect of rainfall shocks on intimate partner violence, rural sample

DV: Experienced intimate partner violence last year	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Sample	Rural	Rural	Rural	Rural	Rural	Rural	Rural
Drought (2.5%) last season	0.050**	0.078***	0.077***	0.040*	0.031	0.031	0.012
- , ,	(0.022)	(0.024)	(0.024)	(0.022)	(0.022)	(0.022)	(0.022)
Flood (2.5%) last season	0.163^{***}	0.037	0.037	0.029	0.019	-0.010	-0.015
	(0.029)	(0.049)	(0.049)	(0.035)	(0.031)	(0.034)	(0.031)
Drought (2.5%) next-to-last season	-0.093***	0.002	0.001	0.016	0.031^{*}	0.021	0.006
	(0.025)	(0.021)	(0.021)	(0.018)	(0.017)	(0.019)	(0.018)
Flood (2.5%) next-to-last season	0.093*	0.055^{*}	0.054^{*}	0.036	-0.009	-0.027	-0.022
	(0.049)	(0.032)	(0.032)	(0.034)	(0.027)	(0.022)	(0.028)
R ²	0.004	0.068	0.071	0.081	0.095	0.104	0.110
Moran's I of residuals	0.133^{***}	0.025^{***}	0.025^{***}	0.018^{***}	0.004^{***}	0.000	-0.002
Z-score	121.75	23.01	23.01	16.52	4.11	0.11	-1.27
Drought (10%) last season	0.016	0.033**	0.033**	0.007	-0.006	-0.003	-0.007
	(0.014)	(0.016)	(0.016)	(0.013)	(0.010)	(0.010)	(0.010)
Flood (10%) last season	0.062^{***}	0.011	0.012	-0.002	-0.034**	-0.034**	-0.037*
	(0.024)	(0.014)	(0.014)	(0.013)	(0.015)	(0.014)	(0.015)
Drought (10%) next-to-last season	-0.117***	-0.028**	-0.028**	-0.018	-0.027**	-0.031***	-0.033**
	(0.014)	(0.013)	(0.013)	(0.012)	(0.011)	(0.012)	(0.012)
Flood (10%) next-to-last season	0.017	0.009	0.009	-0.013	-0.022^{*}	-0.017	-0.019
	(0.019)	(0.016)	(0.016)	(0.013)	(0.013)	(0.012)	(0.012)
R ²	0.013	0.068	0.070	0.081	0.096	0.105	0.110
Moran's I of residuals	0.107^{***}	0.025^{***}	0.025^{***}	0.018^{***}	0.004^{***}	0.000	-0.002
Z-score	97.95	23.26	23.26	16.93	3.85	0.11	-1.29
Survey F.E.	no	yes	yes	yes	yes	yes	yes
Age controls	no	no	yes	yes	no	no	no
Temperature controls	no	no	no	yes	no	no	no
Legendre polynomials of degree 1	no	no	no	no	yes	yes	yes
Legendre polynomials of degree 2	no	no	no	no	no	yes	yes
Legendre polynomials of degree 3	no	no	no	no	no	no	yes
N	103,945	103,945	103,937	103,937	103,945	103,945	103,945

Table E.3: Cross sectional analysis of the effect of rainfall shocks on low household wealth, rural sample

DV: Lowest two wealth quintiles	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Sample	Rural	(2) Rural	Rural	(4) Rural	Rural	Rural	Rural
Drought (2.5%) last season	-0.060**	-0.090***	-0.089***	-0.069***	-0.042	-0.027	-0.013
Diought (2.570) last season	(0.030)	(0.031)	(0.033)	(0.027)	(0.042)	(0.027)	(0.022)
Flood (2.5%) last season	0.004	0.011	0.011	0.013	0.066***	0.022)	0.015
11000 (2.370) last season	(0.004)	(0.011)	(0.011)	(0.013)	(0.025)	(0.028)	(0.013)
Drought (2.5%) next-to-last season	0.109***	0.120***	0.120***	0.044	0.070***	0.082***	(0.022) 0.058^{**}
brought (2.570) next-to-last season	(0.035)	(0.035)	(0.035)	(0.029)	(0.027)	(0.032)	(0.038)
Flood (2.5%) next-to-last season	-0.072	-0.053	-0.053	0.011	(0.027) 0.046	0.035	0.028
Flood (2.5%) flext-to-fast season	(0.047)	(0.047)	(0.047)	(0.011)	(0.040)	(0.035)	(0.028)
R ²	0.002	0.032	0.033	0.093	0.126	0.153	0.166
Moran's I of residuals	0.002	0.032	0.035	0.095	0.120	0.155	-0.001
	83.50	71.32	71.35	26.01	15.82		
Z-score						2.60	-0.37
Drought (10%) last season	0.010	-0.029	-0.029	-0.012	-0.026	-0.016	0.004
	(0.019)	(0.022)	(0.022)	(0.017)	(0.018)	(0.017)	(0.016)
Flood (10%) last season	0.023	-0.022	-0.022	-0.002	0.055***	0.034^{*}	0.012
	(0.029)	(0.021)	(0.021)	(0.019)	(0.021)	(0.019)	(0.016)
Drought (10%) next-to-last season	0.092^{***}	0.171^{***}	0.170^{***}	0.085^{***}	0.011	0.017	0.012
	(0.021)	(0.027)	(0.027)	(0.018)	(0.019)	(0.018)	(0.018)
Flood (10%) next-to-last season	-0.068***	-0.040*	-0.040*	0.013	0.003	0.001	-0.015
	(0.020)	(0.022)	(0.022)	(0.018)	(0.017)	(0.016)	(0.015)
R ²	0.007	0.038	0.039	0.094	0.126	0.153	0.166
Moran's I of residuals	0.052^{***}	0.044^{***}	0.044^{***}	0.017^{***}	0.011^{***}	0.001^{***}	-0.001
Z-score	75.89	65.16	65.21	25.01	15.89	2.67	-0.42
Survey F.E.	no	yes	yes	yes	yes	yes	yes
Age controls	no	no	yes	yes	no	no	no
Temperature controls	no	no	no	yes	no	no	no
Legendre polynomials of degree 1	no	no	no	no	yes	yes	yes
Legendre polynomials of degree 2	no	no	no	no	no	yes	yes
Legendre polynomials of degree 3	no	no	no	no	no	no	yes
N	369,380	369,380	368,605	368,605	369,380	369,380	369,380

 Table E.4: Repeated cross sectional analysis of the effect of rainfall shocks on intimate partner violence, rural sample

1 /	1						
DV: Experienced intimate partner violence last year	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Sample	Rural	Rural	Rural	Rural	Rural	Rural	Rural
Drought (2.5%) last season	-0.028	-0.019	-0.025	-0.030	0.013	0.033	0.013
<u> </u>	(0.033)	(0.039)	(0.038)	(0.037)	(0.034)	(0.039)	(0.039)
Flood (2.5%) last season	0.002	0.015	0.009	0.016	0.063	0.007	-0.002
	(0.093)	(0.062)	(0.069)	(0.069)	(0.064)	(0.069)	(0.072)
Drought (2.5%) next-to-last season	-0.019	-0.026	-0.017	-0.002	-0.009	0.009	0.011
	(0.027)	(0.027)	(0.028)	(0.032)	(0.034)	(0.037)	(0.039)
Flood (2.5%) next-to-last season	-0.051	0.001	-0.001	0.032	0.004	-0.027	-0.075
	(0.050)	(0.044)	(0.040)	(0.044)	(0.045)	(0.043)	(0.047)
R ²	0.007	0.291	0.306	0.335	0.395	0.472	0.531
Moran's I of residuals	0.039^{***}	0.011^{***}	0.010^{***}	0.004	-0.002	-0.006	-0.009
Z-score	9.81	3.22	2.92	1.49	0.10	-0.96	-1.78
Drought (10%) last season	-0.022	-0.008	-0.006	-0.007	0.005	0.029	0.006
0 ()	(0.015)	(0.019)	(0.019)	(0.020)	(0.022)	(0.027)	(0.028)
Flood (10%) last season	-0.037	-0.036	-0.039	-0.037	-0.011	-0.031	-0.019
< <i>/</i>	(0.033)	(0.025)	(0.025)	(0.025)	(0.028)	(0.032)	(0.034)
Drought (10%) next-to-last season	-0.020	-0.029*	-0.029*	-0.018	-0.039	-0.048*	-0.049
	(0.014)	(0.017)	(0.017)	(0.019)	(0.025)	(0.026)	(0.028)
Flood (10%) next-to-last season	-0.040	0.002	0.001	-0.0005	0.015	0.004	-0.01
	(0.028)	(0.022)	(0.021)	(0.023)	(0.024)	(0.028)	(0.026)
R ²	0.021	0.297	0.313	0.338	0.397	0.477	0.531
Moran's I of residuals	0.039^{***}	0.011^{***}	0.009^{***}	0.004	-0.002	-0.007	-0.009
Z-score	9.98	3.01	2.70	1.45	0.02	-1.14	-1.81
Grid F.E.	yes	yes	yes	yes	yes	yes	yes
Country trends	no	yes	yes	yes	yes	yes	yes
Age controls	no	no	yes	yes	no	no	no
Temperature controls	no	no	no	yes	no	no	no
Legendre polynomials of degree 1	no	no	no	no	yes	yes	yes
Legendre polynomials of degree 2	no	no	no	no	no	yes	yes
Legendre polynomials of degree 3	no	no	no	no	no	no	yes
n (women)	104,207	104,207	104,207	104,207	104,207	104,207	104,20
ii (woinieii)							

Table E.5: Repeated cross sectional analysis of the effect of rainfall shocks on low household wealth, rural sample

DV: Lowest two wealth quintiles	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Sample	All	All	All	All	All	All	All
Drought (2.5%) last season	-0.003	-0.010	-0.009	-0.009	0.011	0.011	-0.0003
	(0.034)	(0.034)	(0.035)	(0.034)	(0.037)	(0.038)	(0.041)
Flood (2.5%) last season	-0.018	-0.025	-0.021	-0.019	-0.028	-0.013	-0.008
	(0.022)	(0.023)	(0.023)	(0.026)	(0.024)	(0.024)	(0.026)
Drought (2.5%) next-to-last season	0.043	0.051	0.050	0.039	0.043	0.094^{**}	0.091^{*}
	(0.038)	(0.039)	(0.040)	(0.042)	(0.043)	(0.048)	(0.052)
Flood (2.5%) next-to-last season	-0.002	-0.008	-0.011	-0.001	0.025	0.025	0.032
	(0.021)	(0.021)	(0.023)	(0.022)	(0.022)	(0.027)	(0.028)
R ²	0.002	0.023	0.039	0.056	0.162	0.232	0.277
Moran's I of residuals	0.007^{***}	0.008^{***}	0.008^{***}	0.004^{***}	0.001	-0.001	-0.001
Z-score	4.26	4.56	4.53	2.66	1.27	-0.09	-0.18
Drought (10%) last season	0.023	0.019	0.015	0.014	0.023	0.014	0.009
	(0.023)	(0.027)	(0.025)	(0.026)	(0.027)	(0.029)	(0.029)
Flood (10%) last season	0.024	0.016	0.020	0.024	0.026	0.021	0.018
	(0.014)	(0.015)	(0.015)	(0.017)	(0.018)	(0.016)	(0.017)
Drought (10%) next-to-last season	0.040^{**}	0.058^{***}	0.060^{***}	0.065^{***}	0.047^{*}	0.058*	0.056^{*}
	(0.020)	(0.022)	(0.021)	(0.022)	(0.026)	(0.032)	(0.033)
Flood (10%) next-to-last season	-0.019	-0.028	-0.028	-0.032	-0.022	-0.028	-0.028
	(0.018)	(0.022)	(0.021)	(0.022)	(0.023)	(0.022)	(0.022)
R ²	0.015	0.039	0.056	0.073	0.170	0.236	0.281
Moran's I of residuals	0.007^{***}	0.007^{***}	0.007^{***}	0.003^{**}	0.001	-0.001	-0.001
Z-score	4.17	4.31	4.27	2.49	0.88	-0.11	-0.29
Grid F.E.	yes	yes	yes	yes	yes	yes	yes
Country trends	no	yes	yes	yes	yes	yes	yes
Age controls	no	no	yes	yes	no	no	no
Temperature controls	no	no	no	yes	no	no	no
Legendre polynomials of degree 1	no	no	no	no	yes	yes	yes
Legendre polynomials of degree 2	no	no	no	no	no	yes	yes
Legendre polynomials of degree 3	no	no	no	no	no	no	yes
n (women)	455,342	455,342	455,342	455,342	455,342	455,342	455,342
	1,123	1,123	1,123	1,123			1,123

	0,			
DV: First violent episode	(1)	(2)	(3)	(4)
Sample	Rural	Rural	Rural	Rural
Drought (2.5%)	0.932	0.888	0.896	0.896
,	(0.076)	(0.073)	(0.078)	(0.077)
Flood (2.5%)	1.039	1.028	1.059	1.018
	(0.067)	(0.058)	(0.061)	(0.059)
R ²	0.023	0.029	0.026	0.030
Drought (10%)	0.992	0.976	0.975	0.988
_ 、 ,	(0.038)	(0.040)	(0.043)	(0.041)
Flood (10%)	1.047	1.039	1.060	1.032
	(0.040)	(0.038)	(0.041)	(0.040)
R ²	0.023	0.029	0.026	0.030
Grid F.E.	yes	yes	yes	yes
Piecewise constants	yes	yes	yes	yes
Age at marriage (grouped)	yes	yes	yes	yes
Survey-specific time trends	no	yes	yes	yes
Temperature controls	no	no	yes	no
Legendre polynomials of degree 1	no	no	no	yes
n (marriage-years at risk)	152,750	152,750	143,944	152,750
N (women)	$32,\!874$	$32,\!874$	$32,\!874$	$32,\!874$

Table E.6: Duration analysis of the effect of weather shocks on first incidence of intimate partner violence in marriage, rural sample

Droughts and floods refer to rainfall below the threshold in rainy seasons terminating during the relevant marriage year or the year before. The age of marriage variable is grouped in five year intervals. Standard errors clustered on the ERA-Interim grid level in brackets. * significant at 10%, ** significant at 5%, *** significant at 1%.